Société pour l’Avancement de l’Interprétation des Diagraphies

La SAID, Société pour l’Avancement de l’Interprétation des Diagraphies, section française du Parc Vulcania, est une association à but non lucratif, sur participation individuelle, dont l’objet est de faire partager connaissances et expériences de terrain aux scientifiques, ingénieurs, gestionnaires des industries géophysiques en diagraphie, traitement des données sur champs pétrolifères, interprétation des diagraphies de sondage de l’industrie en exploration pétrolière, production de pétrole et de gaz, et forage.

Society of Petrophysicists and Well Log Analysts


The Society of Petrophysicists and Well Log Analysts (SPWLA) is a nonprofit corporation dedicated to the advancement of the science of petrophysics and formation evaluation, through well logging and other formation evaluation techniques and to the application of these techniques to the exploitation of gas, oil and other minerals.

SAID, French chapter of the SPWLA, Society of Petrophysicists and Well Log Analysts, is an individual-membership non-profit making professional organization aiming at sharing knowledge and fieldwork experience among scientists, engineers, managers in the electronic wire-line logging, oilfield data processing, well logs interpretation in the petroleum exploration, oil and gas production, and drilling industry.

Annulation de la réunion technique sur les Réservoirs Fracturés

Cancellation of Paris 2005 Fractured Reservoirs Technical Meeting

Le Comité des programmes a le regret de vous informer que la réunion sur les Réservoirs Fracturés, organisée conjointement par la SAID, la SGF et l’AFTP, et qui devait avoir lieu en décembre à Paris, a du être annulée.

The Steering Committee of Paris 2005 Fractured Reservoirs is sorry to announce that the two days Technical Meeting in Paris, France, planned in December 2005 and organized jointly by SAID (SPWLA French Chapter), with SGF and AFTP, had to be cancelled.

Conseil d’Administration

Président du Conseil : M. Sylvain Boyer
ENSPM-IFP Rueil-Malmaison - France

Vice-Président : M. Henri Blondelle
AMEC SPIE - IPEDEX France

Trésorier : M. Jacques Delalex
ENSPM-FI/IFP-Training Rueil-Malmaison - France

Secrétaire : M. Alain Dupont
GEONUMERIC S.A.S. Paris - France

Secrétaire Technique : M. Dat Vu Hoang
SCHLUMBERGER France

Membres du Conseil

Mme Dominique Chapellier
Université de Lausanne Suisse

M. Patrick Renoux
GEOSTOCK France

Mme Frédérique Touron
ATEMIS Technologies France

Présidents d’honneur

André HOSSIN, Maurice VERDIER

Distinction de la SAID

par Hugues MONROSE

Nominé « Best Chapter 1998 »
Le Conseil d’Administration a le plaisir de vous annoncer que la SAID a reçu en juin 1999 à Oslo au 39e symposium international des diagraphies « l’AWARD du BEST CHAPTER 1998 ».

Que représente cet AWARD ?

C’est une récompense que dessert chaque année le comité central de la SPWLA par un vote de ses membres, au chapitre qui lui apparaît le plus méritant.
Ce mérite est jugé sur le niveau et la ponctualité des réunions tenues au cours de l’année, sur la part qu’a pris le chapitre à la diffusion des diagraphies dans le monde scientifique, sur les bonnes relations qu’a pu entretenir ce chapitre avec la maison mère, mais aussi avec les autres sociétés scientifiques, sur le nombre de membres du chapitre inscrits à la maison mère, sur la qualité des projets en gestation, et enfin sur le bon équilibre et la bonne tenue des comptes.

La demande de l’AWARD

Votre Conseil d’Administration estimait que nous remplissions pleinement ces critères et a déposé en début d’année un dossier en ce sens à la SPWLA à Houston. Nous avons eu la joie d’être les heureux élus.

Signification de l’AWARD

Dans le monde anglo-saxon, cette récompense est très considérée et très prisée, d’autant que potentiellement un chapitre ne pourrait l’obtenir que tous les 57 ans ! Aussi nous avons été l’objet de toutes les sollicitudes et de tous les égards à Oslo, où la SAID était représentée par son Président.

La SAID dans la SPWLA

Nous rappelons que la SPWLA a été fondée en 1956 à Tulsa dans l’Etat d’Oklaoma. La SAID a été créée en 1966, en étant le quatorzième chapitre à voir le jour et à rejoindre la maison mère, qui compte maintenant 57 chapitres. Quarante deux chapitres sont actifs en 1999, 25 aux USA et 17 autres de part le monde. Sur ces dix sept, l’Europe en compte huit, auxquels se rattache un neuvième, l’Egypte. Ainsi le Canada, l’Amérique Latine, l’Asie et l’Australie totalisent ensemble les 8 autres chapitres. Durant les dix premières années d’existence de la SAID, l’appartenance à la SPWLA était la condition première pour devenir membre de la SAID. Maintenant un peu plus du tiers des membres de la SAID sont inscrits à la SPWLA.
Ce beau score est obtenu grâce à Schlumberger (France) dont une très forte majorité des ingénieurs est inscrite à la SPWLA et en même temps à la SAID.
Retenons quand même que, dans beaucoup de chapitres des USA, 100 % des membres sont aussi inscrits à la SPWLA.

Autres bonnes nouvelles

En cette année 1999, la France, patrie des diagraphies a été à l’honneur à la SPWLA : notre collègue (mais aussi mon professeur de diagraphie à l’ENSPM) Robert Desbrandes, actuellement professeur emeritus à l’Université de Bâton Rouge (Louisiane) a reçu à Olso « le Gold AWARD » pour l’ensemble de son oeuvre consacrée aux diagraphies. Rappelons que Robert Desbrandes est à l’origine de la diagraphie de densité (Gamma-Gamma), et qu’il fut aussi Président de la SAID.
Notre autre collègue, Philippe Theys, qui assure la direction du « Logging en puits horizontal » chez Schlumberger-Anadrill à Sugar-Land (USA), précédemment membre du Conseil d’Administration de la SAID, puis Vice-Président Technologie de la SPWLA, a été élu par la majorité des membres des 42 chapitres, Président de la SPWLA en mai 1999.
Il a le titre de « Président elected » ; siège à côté du président en exercice et assurera la présidence effective de la SPWLA de juin 2000 à juin 2001.
Le Conseil d’Administration adresse à Messieurs Desbrandes et Theys toutes les félicitations de la SAID, et tout le chapitre espère une fructueuse collaboration avec le nouveau Président de la SPWLA.

Pour le Conseil d’Administration,
Hugues Monrose
Lettre 132, septembre - octobre 1999

Dernières annonces

Latest News

  1. Le Comité des programmes a le regret de vous informer que les 2 journées techniques sur les RÉSERVOIRS FRACTURÉS, organisées conjointement par la SAID, la SGF et l’AFTP, et qui devaient avoir lieu en décembre à Paris, ont du être annulées.
    The Steering Committee of Paris 2005 Fractured Reservoirs is sorry to announce that the two days Technical Meeting in Paris, France, planned in December 2005 and organized jointly by SAID (SPWLA French Chapter), with SGF and AFTP, had to be cancelled.

  2. La prochaine Réunion Technique sera une Mini-école sur le thème des Diagraphies non pétrolières qui aura lieu le Mercredi 19 octobre 2005 de 8h00 à 17h00 dans les locaux de l’École de Géologie de Nancy.

Mini-école Diagraphies non pétrolières

RÉUNION TECHNIQUE DU 19 OCTOBRE 2005 À NANCY
La SAID organise le 19 octobre 2005 à Nancy (ENS Géologie) une mini-école consacrée aux DIAGRAPHIES non pétrolières.

Trois ateliers fonctionneront en rotations de 1h30 chacun sur les thèmes suivant :
Hydrogéologie avec le concours de Dominique CHAPELLIER,
Géomécanique sous la tutelle d’Yvon DROUILLER de l’ANDRA
Mine avec un représentant des SALINS du MIDI.

Des spécialistes présenteront des cas concrets et simples, accessibles à tout public.
La société EGS effectuera une présentation générale en début de journée sur l’acquisition des données diagraphiques dans l’industrie non pétrolière, les objectifs et contraintes, et du matériel de forage et des outils d’enregistrement diagraphique seront exposés.

Cette mini-école se déroulera dans les locaux de L’École de Géologie, campus de l’INPL à Vandoeuvre.

Programme prévisionnel
8h - 8h30 Exposé général en amphi
8h30 - 9h30 Présentation EGS en amphi
“Acquisitions diagraphiques dans l’industrie non pétrolière : objectifs et contraintes”

9h30 - 10h00 Pause café (Posters et outils)

10h00 - 11h30 Première série d’ateliers

11h30 - 13h00 Repas

13h00 - 14h30 Deuxième série d’ateliers

14h45 - 16h15 Troisième série d’ateliers

Un pot amical sera offert en fin de journée.

Afin de nous aider dans la préparation de cette journée (documents, repas …), nous vous demandons de bien vouloir nous informer avant le 30 septembre 2005 de votre désir d’assister à cette journée, en nous précisant si vous souhaitez prendre le repas moyennant une contribution de 15 euros.

Les anciennes données (logs, sismique…)

OLD DATA (LOGS, SEISMICS…)
Programme prévisionnel
Présentation sur les logs (O. Serra / Serralog)

Sauvegarde des données sismiques en France (F. Hannot / BRGM)

La réponse et les problèmes de calibration des anciens Neutrons illustrés par un exemple portant sur un jeu de logs russes (A. Dupont / Geonumeric)

Apport des mesures de résistivités CHFR en trou tubé pour une meilleure interprétation des anciens logs de résistivité (Isabelle Dubourg / Schlumberger)

Logs de cimentation (Mikael Allouche / Schlumberger)

Interprétation des données d’anciens logs de résistivités (Henri Blondelle / Ipedex)

Réunion des Sciences de la terre

STRASBOURG
La SAID tiendra une session le mardi 21 septembre 2004

par M. Sylvain BOYER

Le site de ces journées RST est http://eost.u-strasbg.fr/RST-GV

Vous y trouverez le calendrier en particulier de la session SAID qui est la RSTGV15 : Diagraphie : propriétés physiques des roches et faciès (symposium SAID)

Mesures en cours de forage

Mardi 11 mai 2004
Institut Français du Pétrole, Rueil Malmaison
entre 14h00 et 17h00

Cette réunion technique de la SAID « Mesures en cours de forage » est organisée sur une demi-journée avec la coopération de l’AFTP et de la SGF. Cette réunion a pour but de faire un point sur les nouveautés technologiques dans ce domaine et sur leur usage. La quasi totalité des mesures diagraphiques conventionnelles peuvent maintenant être réalisées en cours de forage, à l’aide d’outils incorporés au train de tiges, ou du moins descendus dans le puits par l’intermédiaire de ces mêmes tiges. Ces mesures, qui ont rapidement évoluées avec le développement des puits « déviés » et « horizontaux », sont de plus en plus utilisées, en particulier lors du pilotage de ces puits dans des conditions très contraignantes. Elles apportent également des informations précieuses dans l’étude de l’évolution latérale des faciès des formations traversée. Toutefois, l’intégration de certaines de ces informations dans l’interprétation pétrophysique nécessite des traitements qui ne sont pas encore du domaine classique.
L’acquisition et le traitement des données ramenées en surface par l’intermédiaire de la boue elle-même (en particulier l’étude des indices gazeux) devraient permettre par ailleurs l’adjonction de ces informations dans l’élaboration du modèle géologique. Les techniques d’acquisition, l’échantillonnage, les supports utilisés, la tradition même, sont cependant autant de seuils à franchir pour arriver à incorporer efficacement ces données et assurer un suivi ou un pilotage performant du forage et une caractérisation des formations traversées.

Mini-École d’interprétation des diagraphies

Programme de la Mini-École d’interprétation des diagraphies du 18 novembre 2003 de 10h à 18h à l’Université de Jussieu - Tour 56, 2ème étage, couloir 56-66, salle du DEA d’Hydrologie - Place de Jussieu, Paris 5ème - Métro Jussieu.


Téléchargement “Programme de la Mini-École d’interprétation des diagraphies du 18 novembre 2003 de 10h à 18h à l’Université de Jussieu - Tour 56, 2ème étage, couloir 56-66, salle du DEA d’Hydrologie - Place de Jussieu, Paris 5ème - Métro Jussieu.”

Caractérisation pétrophysique des réservoirs et études des synergies entre les mesures de laboratoire et les mesures diagraphiques

image 182 x 157 - 2.2 koCette réunion se tiendra le 8 octobre 2002 à partir de 10h00, amphi de la Maison d’Archéologie (Bx3) Institut EGID-Bordeaux 31, allée Daguin, cedex, 33607 Pessac

Tél. (33) 05.56.84.80.72

Fax. (33) 05.56.84.80.73

Contact Adrian.Cerepi@egid.u-bordeaux.fr

Comité d’organisation

Le comité d’organisation accepte encore quelques propositons de communications jusqu’au 8 septembre 2002 à l’une des adresses ci-dessus indiquées.

Comité d’organisation : Adrian Cerepi (EGID-Bordeaux 3), Hugues Monrose (Beicip-Franlab), Jean-Pierre Barde (GDF), René Burlot (EGID-Bordeaux 3) ,Didier Lasseux (LEPT-Bordeaux 1)

Programme
10h15 10h30
Ouverture de la réunion - Président de Bordeaux 3 / Directeur de Institut EGID - Bordeaux 3
10h30 10h40
Hommage à Fernand DAGUIN, ex professeur à Fort de France et à l’Université de Bordeaux - H. MONROSE
10h40 11h00
Différences et synergies entre mesures de laboratoire et mesures diagraphiques
11h00 11h30
Comportement pétrophysique des réservoirs à chlorite de faible contraste et faible résistivité - C. DURAND - IFP
11h30 11h45
Pause
11h45 12h15
Intégration de données diagraphiques et sismiques dans la prédiction des réservoirs. Exemple du Permo-Trias du Kazakhstan. J-P. BARDE - GDF/EGID
12h15 12h45
Analyse du comportement acoustique des roches réservoirs. R. BURLOT - EGID
12h45 13h15
Principe de base de la RMN - exemple d’application. M. FLEURY - IFP
13h15 14h30
Déjeuner
14h30 15h00
Complémentarité des images et des carottes A. ETCHECOPAR - Schlumberger
15h00 15h30
Propriétés pétrophysiques des réservoirs par combinaison d’analyse quantitative 2D d’image pétrographique et outils 3D pétrophysiques. A. CEREPI - EGID
15h30 16h15
Pause avec présentation sous forme de posters par les étudiants de l’EGID diplômés du DESS Ingéniérie des Géo-Ressources et Risques (2002 - 2003) de leurs travaux de “Bureau d’Études” sur des réservoirs carbonatés d’Aquitaine et présentation de l’EGID
16h15 16h45
Résistivité électrique des réservoirs carbonatés. M. FLEURY - IFP
16h45 17h15
Diagraphies appliquées aux aquifères. A. CHAPITEAU - Hydro-Assistance
17h15 17h30
Clôture

Traitements des données diagraphiques et géophysiques dans le cadre des études sédimentologiques et de caractérisation de réservoir

Réunion technique du 25 juin 2002
Programme prévisionnel
10h00 10h30
Analyse automatique de faciès diagraphiques et sismiques F. Fournier (IFP)
10h30 11h00
Analyse automatique d’électrofaciès : un cas d’étude F. Cailly (Beicip-Franlab)
11h00 11h3
L’interprétation géologique et pétrophysique des diagraphies : réseaux de neurones et statistiques appliqués à la caractérisation des réservoirs (Soft Techlog) S. Gottlib-Zeh (Techsia)
11h30 11h45
Pause
11h45 12h15
Images et diagraphies pour définir les faciès. Oui ; mais quels faciès ? A. Etchecopar (Schlumberger)
12h15 12h45
Méthode de modélisation de turbidites à 3-D à partir de données 1-D (logs, images) obtenues dans des puits S. Luthi & A. Malinverno (Delft University)
12h45 13h15
Modélisation et inversion de la mesure de résistivité électrique F. Touron (Atemis-Technologies)
13h15 14h30
Repas
14h30 15h00
Analyse intégrée (géologique et pétrophysique) des logs conventionnels et de Résonance Magnétique Nucléaire Ph. Rabiller (Paradigm) (avec une présentation du module MRGC de Geolog6 par N. Poète)
15h00 15h30
Application des ondelettes à la détection des ruptures et caractérisation des évolutions du signal diagraphique Fred Robail
15h30 15h45
Pause
15h45 16h15
Integrated resistivity interpretation of array induction, multi-component induction and borehole resistivity imaging measurements in thinly bedded sand-shale sequences Mette S Munkholm or Nigel Dodds (Baker Atlas)
16h15 16h45
Analyses géostatistiques de logs et modélisations géologiques Hélène Beucher (Centre de Géostatistique de l’École des Mines de Paris)
16h45 17h00
Clôture

Lieu : Société Géologique de France
77, rue Claude Bernard 75005 Paris

R E R Luxembourg ou Port-Royal

Métro Censier Daubenton

Nouveaux Capteurs / New sensors

Organisateurs :
Claude Boyeldieu
Jean-Luc Mari, ENSPM-IFP, Rueil-Malmaison
Patrick Renoux, GEOSTOCK, Rueil-Malmaison

Lieu / meeting place : Institut Français du Pétrole - Grand Amphi, 1-4 Av. Bois Préau 92500 Rueil-malmaison

Assemblée Générale Ordinaire de la SAID à 16h00, à l’issue de la réunion technique, dans les mêmes locaux si le quorum est atteint

Mardi 27 mars 2001 : 1 jour / one day
Comparaison Logging au câble, Logging en cours de forage / Comparison Wireline/LWD
Organisateurs :

Alain Dupont, CSN, Paris

Loïc Tarouilly, TOTAL FINA ELF, La Défense

Lieu / meeting place : Gaz de France - La Plaine St Denis (face au Stade de France)

La réunion est suivie par la seconde Assemblée Générale Ordinaire de la SAID vers 15h30 dans les mêmes locaux

Mardi 12 juin 2001 : 1 jour / one day
En raison des nombreux congrès qui se tiennent au mois de juin, la réunion technique de la SAID prévue le mardi 12 juin a été annulée.

Mardi 23 octobre 2001 : 1 jour / one day
Interprétation des mesures de Résonance Magnétique Nucléaire NMR interpretation
Organisateurs :

Henry Edmundson, SCHLUMBERGER, Paris

Marc Fleury, IFP, Rueil-Malmaison

Lieu / meeting place : Schlumberger - 42, rue Saint Dominique Paris 7ème RER C ou Métro Invalides

La réunion est suivie par une Assemblée Générale Extraordinaire de la SAID vers 16h40 dans les mêmes locaux

Mardi 4 décembre 2001 : 1 jour / one day
Bancs Minces
Organisateurs :

Patrick Renoux, GEOSTOCK, Rueil-Malmaison

Hugues Monrose, Beicip-Franlab, France

Evaluation des Bancs Minces / Interpreting Thin Beds

Mardi 4 décembre 2001
14h30 15h10
New oil-base imaging techniques as an aid to interpreting thin beds Philip Cherung (Schlumberger)
15h10 15h50
Anisotropy evaluation in thin beds through joint inversion of array induction and high-resolution laterolog data Dat Vuhoang (Schlumberger)
15h50 16h30
Identification of producible low net-to-gross zones offshore Angola through the application of Multi-Component Induction Logging Nigel Dodds (Baker Atlas)

Comparaison Logging au câble, Logging en cours de forage / Comparison Wireline/LWD

Mardi 27 mars 2001
10h00 : Accueil
Mesure, Contrôle et Traitement de la Profondeur par Alain Citerne (Schlumberger)
Comparaison des senseurs et des mesures par Schlumberger

Transmission and Acquisition Modes par Nicolas Meyer (TotalFinaElf)

Le repas, offert par GDF, aura lieu à 13h00 sur le site

CONCLUSION DE LA JOURNÉE

ASSEMBLÉE GÉNÉRALE ORDINAIRE DE LA SAID à 15h30 suivant la fin du meeting

Lieu : Gaz de France
361 av. du Président Wilson
93211 La Plaine St Denis
En raison des conditions d’accès au site Gaz de France, si vous souhaitez assister à cette réunion, vous aiderez les organisateurs en acceptant de bien vouloir communiquer à l’avance vos nom, prénom et société à M. Ghislain DELMAS GDF

Accès à Gaz de France :

Page 1
Solving Not Guessing: A unique, Non-Statistical, Machine Learning methodfor Curve Prediction.DTADr Ravi Arkalgud(Helio-Flare Ltd/Lloyds Register)Ross Brackenridge(Subsurface Software Manager, Lloyd Register)
Page 2
Answering the UnknownThroughout history many have tried to answer the unknownby way of Guessing, this has led to the flourishing growth ofnew careers like….Astrologers,Tarot readers,Palm Readers and……Statisticians!The Guessinghas become a powerful tool to quantify theintangibles and it has led to amazing discoveries butsometimes disastrous consequences
Page 3
What is Domain Transfer Analysis(DTA)?● A mathematical method developed to tackle theproblem of predicting petrophysical/geologicalproperties from minimal data● DTA transforms data to a different domain and solves,hence the very name Domain Transfer Analysis.● DTA produces a solution based on Partial DifferentialEquations (PDE) determining all criticalities andinterdependencies● Initial State: Representation of interaction between allelements● Final State: Interaction between the various elementsresolved● DTA does not mix the input data unlike other statisticalmethods. Data identity is preservedInitial StateFinal State
Page 4
Partial Differential Equations● In mathematics, a Partial Differential Equation (PDE)is a differential equation that contains unknownmultivariable functions and their partial derivatives.● This is in contrast to ordinary differential equations,which deal with functions of a single variable andtheir derivatives.● PDEs are used to formulate problems involvingfunctions of several variables.● Just as ordinary differential equations often modelone-dimensional dynamical systems, partialdifferential equations often model multidimensionalsystems.Differential EquationPartial Differential Equation3 Dimensional Partial Differential Equation Example
Page 5
Traffic Jam AnalogyLloyd’s Register5Statistical Guessing Vs Problem SolvingDrivers ViewTomTom/Garmin ViewDriver chooses lane based onhistorical experience of whichone usually gets him/her to theirdestination quickestSee the problem from anotherdimension. Uses live data toadvise on best lane to take toreach destination quickestThe most common solution is not always the correct solution!!!DTA- No more Guesses, Only the Solution.
Page 6
DTA User Interface in IPLloyd’s Register6
Page 7
DTA User Interface in IPLloyd’s Register7● Choose Number ofSamples in model build– Default 200– Maximum 475● The ‘Curve to Predict’ issorted and the data levelsused to create the modelare taken as:– Top 5% of the data values– Bottom 5% of the data values– Remaining 90% equallydistributed
Page 8
DTA User Interface in IPNote: DTA Parameter set consistent with other IP curve prediction modules for easy comparison
Page 9
DTA Example 1 - Model Build in Well #1● DTA Red● NN Black● Core Blue● Both models very similar
Page 10
DTA Example 1: Blind Test in Well #2 which is shallower● DTA Red● NN Black● Core Blue● DTA model much betterthan NN when steppingout of modelled range
Page 11
DTA Example 2● DTC predicted from Rt, Vcl and depth● DTA Red● MLR Blue● Measured Green● In the shallow section DTA is able tomodel the higher DTC due to the lossof compaction, where MLR is not.
Page 12
DTA Example 3● Porositypredictionfrom mud gas(the only inputs tothe model are inTrack 1)● DTA muchbetter thanNN Data●Log derived PHIE is Blue●Prediction of PHIE is Red●Prediction of PHI_core isPHI GreenNeural NetworkDTA
Page 13
DTA Example 4● Sw Prediction from mud and drillingdata (C1, TG and ROP)● DTA much better than Fuzzy Logic andNeural NetworkDTANeural NetworkFuzzy
Page 14
DTA Example 5: Robustness of DTALloyd’s Register14● Predicted continuous permeability based on discretecore data using both DTA and NN techniques● Several curves selected for building model:– Gamma Ray; Density; Neutron Porosity; CompressionalSlowness; PE, Thorium, Potassium● Prediction executed for different volumes of calibrationdata● DTA proved consistent at levels of 40% and 30% ofreduced data set while NN accuracy reduces● Study demonstrates the robustness of DTA withreduced input data volume
Page 15
DTA Example 5: Robustness of DTALloyd’s Register15DTA PredictionNN PredictionUsed Data PointsUnused Data Points30%Calibration Data100%Calibration Data
Page 16
Benefits of DTA● DTA can more accurately predict outside the range of data used to build the model– Fuzzy Logic cannot predict outside the range of data used to build model– Multi-Linear Regression can predict outside the range but can be very wrong– Neural Networks can be unstable● DTA does not need lots of data to build a robust model, it is designed to work with sparseand heterogeneous data sets● Results are exactly repeatable, One Data Set = One Solution– Neural Networks are non repeatable when training and can be ‘over-trained’ (difficult to know when to stop training)● DTA handles the non linearity of geological data● Geological characteristics of the subsurface (e.g seismic, log responses, core etc.) areaccounted for in the gradients of the PDE based solution.
Page 17
Thank YouPlease contact:Ross BrackenridgeSubsurface Digital Products ManagerLloyds Registerross.brackenridge@lr.org

Page 1
SAID, Maison de la Géologie 77 rue Claude Bernard75005 Paris http://www.la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 1 | 8Société pour l’Avancement de l’Interprétation des DiagraphiesSection française de la SPWLA “Society of Petrophysicists and Well Log Analysts”S.A.I.D. TECHNICAL SESSION :BOREHOLE SEISMIC / SISMIQUE DE PUITSThursday, April 5 2018: 15:00-18:00Salle Ver Straelen, SGF77 Rue Claude Bernard, 75005 ParisAccess map on page 2 ; Abstracts on pages 3 to 7,Speakers and contributors on page 8Web site : http://www.la-said.orgMandatory registration by email to : vice-president@la-said.orgPossibility to follow the meeting via a Web Lync through the same registration .Specify your name, company, job, email and telephone to get an invitation.15:00 – 15:05 Welcome , Safety and Introductory remarksIntroduction1. 15:05 – 15:20 : Basic Borehole SeismicJean-Claude PUECH , SchlumbergerTechnologies Session :2. 15:20 – 15:35 : « What’s needed, What’s New, What’s Next », AVALON Geosciences :Gary TUBRIDY – William WILLS, presented by Charles NAVILLE, IFP-EN3. 15:35 – 15:50 : New acquisition technologies for VSP and Microseismic with conventionalhardware and Fiber optical Distributed Acoustic Sensing (DAS), Oleg VALISHIN, FlorianPERCHER , SERCELCase Studies Session :4. 15:50 – 16:20 : Borehole seismic applications from operator’s perspective, MichelVERLIAC, TOTAL16:20 – 16:50 : Coffee Break16:50 – 17:00 : Information about SAID5. 17:00 – 17:30 : Log of Formation Parameters While Drilling , Sylvain SERBUTOVIEZ,IFP-EN6. 17:30 – 18:00 Orientation of 3 component Rig-source VSPs, IFPEN-APS-PPZG,Charles NAVILLE, IFP-EN
Page 2
SAID, Maison de la Géologie 77 rue Claude Bernard75005 Paris http://www.la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 2 | 8Location of the meeting :Salle Ver Straelen, SGF ,Société Géologique de FranceMaison de la Géologie77 Rue Claude Bernard, 75005 PARISWeb site : http://geosoc.frPour entrer, appuyer simplement sur le bouton et pousser la porte ( Ne pascomposer de code) ; Bâtiment au fond de l’allée, salle à droite au RDC.To enter, just push the button and push the door ; Do not type any code ;Room on the right as you enter the building .Plan d’accès/ Access map :A partir du RER-B Station Luxembourg , via Rue Gay-LussacA partir du RER-B Station Port Royal via Rue St JacquesA partir des métros Censier-Dobanton ou Place Monge ( Ligne 7 La Courneuve-mairie- d’Ivry )Egalement par Bus RATP .( Val de Grâce ou Luxembourg )
Page 3
SAID, Maison de la Géologie 77 rue Claude Bernard75005 Paris http://www.la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 3 | 8ABSTRACTS1. Basic Borehole SeismicJean-Claude PUECH , SCHLUMBERGER“Did you say VSP? What for ?”A tour of the technique will be given, emphasizing what a geoscientist can expect and obtain out ofthis singular well logging measurement. The presentation will review the different applications,moving gradually from simple to more advanced ones, and illustrating them with real life examples.2. « What’s needed, What’s New, What’s Next », AVALON Geosciences : Gary TUBRIDY –William WILLS, presented by Charles NAVILLE , IFP-EN.PDF : 2018 SAID Avalon_Sc_Ltd-VSP Tech Talk v2.pdf ( see www.la-said.org)See also Avalon Web Site : https://www.avalonsciences.com/papers/Plate showing the differentconfigurations used in BoreholeSeismic, depending of the purposeand the geological context.
Page 4
SAID, Maison de la Géologie 77 rue Claude Bernard75005 Paris http://www.la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 4 | 8Example of 3C orientation of rig source VSP dataset, orientation QC on the field:
Page 5
SAID, Maison de la Géologie 77 rue Claude Bernard75005 Paris http://www.la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 5 | 83. New acquisition technologies for VSP and Microseismic with conventional hardware andFiber optical Distributed Acoustic Sensing (DAS), Oleg VALISHIN, Florian PERCHER ,SERCELThe development of downhole seismic tool and technologies of their use has significantly advancedin the last few years. Current arrays system are capable of handling up to 120 shuttles onconventional wireline, with up to 3000 meters well coverage. The pressure and temperature limitshave been pushed up dramatically, up to 35,000 psi and 205 degC for digital tools. The operationsoffshore with 100 levels and > 50,000 shooting points are not considered exceptional anymore. Therig up time, one of the primary issues of the VSP applications have been significantly reduced due tonovelty deployment methods.On the microseismic monitoring, split arrays with up to 1000 meters wellbore coverage become anorm for HFM, while improved electronics and increased number of geophones per tool allowmicroseismic detection in the conditions where it was not feasible before.The advent of the Distributed Acoustic Sensing brought a new dimension to the borehole seismic,empowering certain applications, but confusing many users. A certain tendency has been widely usedto present “either geophones or DAS” approach, while ignoring the final value of the measurement tothe data user. Sercel will present their view on the matter, where both of the technologies can be, andshould be used as complementary to each other, depending on the customer needs and the level oftechnology.4. Borehole seismic applications from operator’s perspective, Michel VERLIAC , TOTALOverview of recent applications of borehole seismic for field exploration and development withinTotal, including examples of use of VSP to improve drilling decisions, structural delineation incomplex geological environment, guidance of surface seismic processing, etc.
Page 6
SAID, Maison de la Géologie 77 rue Claude Bernard75005 Paris http://www.la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 6 | 85. LOG OF FORMATION PARAMETERS WHILE DRILLING, Sylvain SERBUTOVIEZ,IFP-ENABSTRACT: The variations of formation stiffness are tentatively quantified using mainly the axialdrill bit acceleration compensated with the appropriate drilling parameters in order to produce acontinuous log while drilling. The acceleration sensor is preferably located down hole, at close aspossible to the rook bit, up to 30m behind it. In the examples shown, the root mean squareacceleration is calculated over every drilling time segment of 30 seconds, then it is displayed versusMeasured Depth. Simple compensations are applied with the drilling rotation (RPM) and the rate ofpenetration (ROP) recorded on the drill site. As the obtained log is closely related to the P-waveacoustic impedance calculated from the standard wire line sonic and density logs, this new log hasbeen called “Pseudo acoustic Impedance Log” (PI-log) Comparisons of the pseudo impedance logwith the acoustic impedance computed from the sonic and density logs have been produced fromseveral field examples. Good correlation has been obtained in homogenous formations with strongimpedance variations. Differences are observed in micro fractured and fractured formations. With aPolycristalline Diamond Compact (PDC) bit, the axial and torsion acceleration logs have beenproduced, from top of drillstring measurements only, however only the axial acceleration variationsseem to be related to the lithology. More accurate experiments need to be carried out with PDC bitsusing downhole recorders of mechanical parameters While Drilling, in order to assess the value ofthe present pseudo-log. As the pseudo formation impedance log can be obtained while drilling,related to an “ at the bit” measurement it could be a good Real Time indicator of the lithologicalchanges at the bit in real time and could help in the following applications:· positioning of the drill bit on the seismic section,· definition of coring/casing points…· formation evaluation when used with other logs· early detection of over pressured formation,. early detection of fractured / brittle rock drilled intervals, as illustrated below: the pseudo-impedance log on the right track, obtained with roller cone bit , indicates the weak resistance todrilling in the microfractured, high acoustic impedance dolomite layer underlined in brown.Reference: AAPG Search and Discovery Article #90906©2001 AAPG Annual Convention, Denver, Colorado
Page 7
SAID, Maison de la Géologie 77 rue Claude Bernard75005 Paris http://www.la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 7 | 86. Orientation of 3 component Rig-source VSPs, IFPEN-APS-PPZG,by Charles NAVILLE, IFP-EN;ref: http://www.ifpenergiesnouvelles.com/Expertise/Research-divisions/Geosciences/IFPEN-APS-PPZG-Orientation-of-3-component-Rig-source-VSPsABSTRACT summarizing the main application:SEISDIP : The “VSP dipmeter” from Oriented 3 Components:VSP surveys are commercially recorded with a single zero-offset source position and with adownhole tool including 3 orthogonal seismic sensors. For VSP acquisition in vertical wells, ahardware orientation accessory needs to be combined with the VSP tool.The illumination of seismic reflectors is achieved in 3 Dimensions, with information about their dipand azimuth (SeisdipTM method). 3C VSP yields the structural dip of seismic interfaces from theborehole up to distances of several hundred metres away from the well, even if the reflectors do notintersect the well, or are located below the well.3C VSP can be recorded in cased or open hole. In contrast, electrical dip - meter log measurementsrelates to sedimentary dips within centimetres away from the well bore, and can be recorded in openhole only.3C processing of oriented VSP data allows for reliable identification and improved discrimination ofthe upgoing VSP events: P or S mode, reflected, diffracted or refracted arrivals.In case of interfering reflected/diffracted events generated by lateral dip variations or tilted faultedblocks, 3C processing allows to fully understand the VSP response, while the conventional singlecomponent processing can mislead the interpreter.After showing a couple of case studies of VSP defined DIP, the presentation will focus on HOW toorientate the VSP tools containing 3 component geophones, WITOUT gyroscope.Dip/azimuth determination of reflectors near borehole , illustrated on below figure.Principle of method ( left), field example ( right), in comparison with resistivity dipmeter logCourtesy of PETROREP,FranceReference: AAPG Search and Discovery Article #90906©2001 AAPG Annual Convention, Denver, Colorado
Page 8
SAID, Maison de la Géologie 77 rue Claude Bernard75005 Paris http://www.la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 8 | 8About the Speakers and Contributors of the technical session1. Jean-Claude PUECH, SchlumbergerJean-Claude is a Principal Geophysicist who spent the majority of his career in Schlumberger, acting in differentcountries of Europe and Africa as Borehole Seismic Processor and Team Leader of commercial processing teams.Contact: jean-claude.puech0143@orange.fr2. Gary TUBRIDY, Director, AVALON Sciences Ltd , UKFormally a VSP Field Engineer and Tool Supervisor at SSL, Gary is now the founding CEO and owner of AvalonSciences Ltd. For over 20 years Avalon has been at the heart of innovation for borehole seismic technology. Gary hasgrown the manufacturing operation from a small scale operation to a global business with a full high precision CNCmachining factory, research centre and high pressure/high temperature test facility in the UK, with regional support andservice bases in Abu Dhabi, Houston, Beijing and Singapore. In 2013 Gary acquired the Rosemanowes Deep WellBorehole Test Facility to further enhance seismic tool research and development.Contact : Gary@avalonsciences.com3. William WILLS, Staff Geoscientist , AVALON Sciences Ltd , UKInitially a geologist, William has been part of the global operations team for over 8 years supporting and managing ASLclient service company BHS acquisition and processing operations from the Avalon UK, Gulf of Mexico and MiddleEast regional bases. William is a member of the EAGE Passive Seismic Workshops technical committee and has over10 years’ experience using Avalon borehole seismic hardware and software for both VSP, Hydraulic fracture andpassive seismic monitoring surveys.Contact : Will.Wills@avalonsciences.com4. Oleg VALISHIN, SERCELOleg has a Master of Engineering degree in Petroleum Engineering from French Petroleum Institute. He spent 6 yearsworking for Schlumberger in a variety of roles related to wireline logging and borehole seismic acquisition includingfield operations, and operations management in Africa, Asia and Russia. After leaving Schlumberger he joined Sercelin France, and is currently in charge of the Downhole Seismic Tools business line.”Contact : oleg.valishin@sercel.com5. Florian PERCHER , SERCELContact : florian.percher@sercel.com6. Michel VERLIAC , TOTALMichel is a Borehole Geophysics senior specialist. He graduated with Institut de Physique du Globe – EOST - Strasbourgin 1987 , then with IFP School/ENSPM in 1990. He started his career with Schlumberger, where he worked for 23 yearsin the domain of borehole Geophysics, from field engineer to the headquarter office. In 2013, he joined TOTAL to be incharge of the Borehole Geophysics and Microseismic team as well as the innovation aspects since 2016. He is currently amember of SEG, AAPG, EAGE, SPE and the Geophysicist group within the ENSPM Alumni Association.Contact : michel.verliac@total.com7. Sylvain SERBUTOVIEZ, IFP-ENSylvain graduated from Geology School of Nancy ( ENSG 1986) , IFP School/ENSPM of geophysics (1987).Computer scientist for IPS (Puteaux) during 3 years, involved in Total, GDF and PetroSystems /CGG reservoirengineering projects.Geophysicist in the R&D Seismic Department of IFP, 14 years in borehole seismic projects.Upstream Economist for Oil&Gas in the Economics and Information Department of IFPEN:14 years of techno economics evaluations and market analysis.Contact : sylvain.serbutoviez@ifpen.fr8. Charles NAVILLE, IFP-ENCharles is R&D engineer in IFP-Energies Nouvelles. He spent 15yrs in CGG practising various field and processingseismic methods including reflection/refraction surface seismic, and borehole seismic, single and multi-component.Civil engineer from Ecole Polytechnique-1976, ENSPM-1980. He joined CGG in 1977 with field assignments inGabon, USSR, Brazil, USA, then R&D activities. Filed about 15 patents concerning surface seismic, VSP, and SeismicWhile Drilling/SWD. Present interest in the coherent integration of multiscale results of surface seismic, boreholeseismic, logs and geology in the reservoir interval.Contact : charles.naville@ifpen.fr

Page 1
©IFP©IFPExtended reserves | Clean refining | Fuel-efficient vehicles | Diversified fuels | Controlled CO2Model Temperature in Sedimentary basinsJ-L. RUDKIEWICZjean-luc.rudkiewicz@ifpen.fr
Page 2
©IFP2Why is temperature looked at ?∎ recoverable energy resource∎ diagenesis history cementation/precipitation∎ history of source rock temperature and maturity∎ timing of petroleum generation/expulsion∎ nature and quality of the HC products
Page 3
©IFP3Outline∎ Heat transfer physics∎ What do you need to calibrate∎ Open topics
Page 4
©IFP4Thermal transfer modes
Page 5
©IFP5Paris Basin sectionsAfter Burrus, 1997.
Page 6
©IFP6Temperature gradients in the Paris BasinAfter Burrus, 1997.
Page 7
©IFP7Fourier’s law∎ the heat is conducted from warm to cold∎ λ is the thermal conductivity∎ its unit is the W/m/°C∎ F is the conductive heat fluxT∇-= λFJoseph Fourier (1768-1830)http://fr.wikipedia.org/wiki/Joseph_Fourier
Page 8
©IFPHeat balance equationHeat variation through time +8Conductive component)(Convective component += Heat sources + sedimented/eroded
Page 9
©IFP9Rock Conductivity λ∎ MixingW/m/°K0.511.522.533.544.555.56shalessiltssandstoneslimestonesdolomitesaltgranitebasaltperidotiteHomogeneous mixing : arithmetic meanBedded mixing : harmonic mean(after Turcotte & Schubert, 1982)
Page 10
©IFP10Variations of conductivitywith porosity∎λ = λwΦ. λs1-Φ∎ For the same Heat Flow∎ at surface the gradient is55°C/km∎ at 3000m it is 33°/kmThermal Conductivity / porosity0.5000.6000.7000.8000.9001.0001.1001.2001.3001.40000.20.40.60.81PorosityConductivity050010001500200025003000050100Temperatures (°C)z(m)050010001500200025003000020406080Gradient (°C/km)z(m)
Page 11
©IFP11Crustal heat
Page 12
©IFPIFP Training – Basin Modeling Temperature – 27 novembre 201812(from Stämpfli, 2004)AsthenosphereLithosphereBasin of interestWhat boundary condition ?Thermal reconstruction
Page 13
©IFP13Surface Heat Flow( Pollack et al, 1993)
Page 14
©IFPSurface Heat Flux Maps14Jaupart and Mareschal , 2010 Heat Generation and Transport in the Earth
Page 15
©IFPSurface HF estimates15Davies, J. H. (2013), Global map of solid Earth surface heat flow, Geochem. Geophys. Geosyst., 14, doi:10.1002/ ggge.20271.http://www.mantleplumes.org/WebDocuments/Davies2013.pdf
Page 16
©IFP16Contributors toSurface Heat Flow∎ Sediments∎Gamma ray API∎ Crust∎strong variations with crustnature/age∎usually described as decreasingexponentially with depth :A = Ao exp (-z/zc)∎ Lithospheric Mantle∎varies with age and composition ofthe lithosphere∎depth of thelithosphere/asthenosphereboundary∎Asthenospheric (limit 1300°C)∎convective mantle∎radiogenic source∎friction heat ?0-5 mW/m²mafic : 0 to 20 mW/m²granitic : 20 to 60mW/m²basaltic : almost 0mW/m²peridotite : 0 mW/m²Radiogenic contributionInner earth : 30 to 40 mW/m²Moho
Page 17
©IFP17Heat channelling through salt
Page 18
©IFP18
Page 19
©IFP19Constraining data to calibrateboundary conditions∎ measured temperatures in wells∎ maturity indicators∎ palaeo-thermometers
Page 20
©IFP20Method∎ Use the description of present temperatureregime to extrapolate in the past∎ Need of a unique parameter describing thepresent thermal state:∎ stable through time∎ or variations being easily describedHeat flow has these characteristics
Page 21
©IFP21EoceneSeno1Seno2AlbienBareNeocomMalmJuraLiasTrias020406080 100 120 140 160 180 200Temperature (°C)0.00.51.01.52.02.53.03.54.04.55.0EoceneSeno1Seno2AlbienBareNeocomMalmJuraLiasTrias020406080 100 120 140 160 180 200Temperature (°C)0.00.51.01.52.02.53.03.54.04.55.0Depth (km)Too Low Heat FlowToo High Heat FlowAdjusting well temperatures
Page 22
©IFP22EoceneSeno1Seno2AlbienBareNeocomMalmJuraLiasTrias020406080 100 120 140 160 180 200Temperature (°C)0.00.51.01.52.02.53.03.54.04.55.0EoceneSeno1Seno2AlbienBareNeocomMalmJuraLiasTrias05101520253035404550Geothermal Gradient (°C/km)0.00.51.01.52.02.53.03.54.04.55.0“correct” HF“correct” gradientsAdjusting well temperatures (2)
Page 23
©IFPIFP Training – Basin Modeling Temperature – 27 novembre 201823
Page 24
©IFP24Convective heat transfer∎ the water needs to be VERY fast, more than 1m/year∎ only the few cm around the highly permeable fracturecan be heated up∎ is active along open fractures∎ compaction driven heat transfer needs to be taken intoaccount in case of rapid sedimentation
Page 25
©IFPOpen topics∎ How to simultaneously use geodynamic scale modelsand basin scale models∎ How to reconcile variable thermometers∎ How to handle rapid flow of fluids that are not inequilibrium with the rocks25
Page 26
©IFP26Conclusions∎ Heat flow and conductivity are needed together∎ Calibrate upon present day temperatures∎ Extrapolate to the past with simple assumptions∎ Cross check with maturity parameters∎ Introduce lateral boundary conditions changes at arelevant scale∎ Lithological variations are second order factors,except for evaporites

Page 1
SPWLA France Chapter Lunch and LearnMartin Storey and Paul SpoonerThe SPWLA France chapter is inviting you to attend an information packed L&L(SPWLA GoToWebinar ) given byMartin Storey – “Log Quality Control, easy as 1-2-3!” ; SPWLA Distinguished lecturerand Paul Spooner – “Lifting the Fog of Confusion Surrounding DeterministicPetrophysics”.On Friday June 19 2020 : 12:00 pm – 1:00 pm CEST
Page 2
Speaker Bio:Martin Storey is an independent practicing Petrophysicist with over 25 years of industryexperience, of which over 20 in the Asia-Pacific region. His academic background inmathematics makes him passionate about clear and rigorous work, and he learned duringhis early career in the field, to focus on practicality. He is based in Perth, Western Australia,from where he runs Well Data QA, “helping organisations increase the value of their welldata while lowering costs of acquisition and exploitation”.Speaker Abstract :Martin Storey: Log Quality Control, easy as 1-2-3!LQC… All would agree that bad data should not be let into the organization’s systems and itsdecision-making processes, yet there are no industry standard methods on how best to assurethis for well log data. Electric well logs are the principal data sets for all geotechnical personnelin this industry: logs generally constitute the main continuous and relatively high-resolutionrecords describing a wellbore, and they are available over the main depth intervals of mostwells drilled for hydrocarbon exploration and production.The specialized contractor companies that acquire the logs have quality management systemsin place to ensure compliance and consistency with their own specifications. The datadeliverables are therefore subject to some quality control before delivery to the operatingcompanies, although it is of a general nature and focused on the acquired data, rather thanon their future exploitation.On delivery, the responsibility for any post-acquisition quality control of the well logsfrequently falls on inadequately trained and supervised geotechnical persons, who may skimover it on account of its being “too hard” or “too urgent”. People responsible for log qualitycontrol frequently report that they find it “difficult” or “overwhelming” and that they “don’tknow where to start”. Subject matter experts themselves know that logs must always bechecked and perhaps conditioned before they can be used. Yet few of them havesimultaneously the knowledge, the experience, the reference information, the tools and thetime to verify the fitness-for-purpose of the data methodically and confidently. This systematicrequirement is costly for organizations, and its uncertainty exposes them to unnecessary risks.The situation is exacerbated by concurrent increases in the variety, volume and complexity ofthe log data and in their rates of change.There must be a better way to assure log data quality and readiness for exploitation. Aframework is proposed to formalize and simplify log quality control in operating companiesand other data-user organizations.
Page 3
Speaker Bio:Paul Spooner has over 30 years industry experience. The first 10 years as a WirelineEngineer, followed by 10 years in a Geoscience Centre, which Paul managed for the latter 6years. Paul then worked as a Principal Petrophysicist on many complex, integrated projectswithin the LR Consultancy group, formerly Senergy and Production Geoscience Ltd, beforejoining LR Software where he has been IP Product Champion for several years, providingsupport, training and helping with the development of the IP software product. RecentlyPaul helped with the development and delivery of the Petrophysics and FormationEvaluation MSc course at Aberdeen University.Speaker Abstract :Paul Spooner: Lifting the Fog of Confusion Surrounding Deterministic PetrophysicsClay:Consideration of the distinction between rocks and minerals is of vital importance in thepetrophysical task of determining porosity and hence, water saturation. Given the significanceof this task it is surprising how much confusion there is across the industry over this issue. Theconfusion between clay and shale is the most common, to the extent that many books, papers,training courses and software products still do not differentiate, or explain these clearly orcorrectly. Shale is a rock, typically defined as an indurated, finely laminated, sedimentary rock,composed primarily of clay, mud and silt. The important feature to note is that this definitiondoes not describe the mineralogy but rather the grain size. In this definition, clay refers to claysized particles, i.e. < 1/256 mm. Whilst clay can refer to grain size it can also refer to clayminerals, and it is the dual meaning of the word clay that is at the heart of the confusion inthe industry. Clay minerals are a group of hydrous aluminium silicates with a sheet-likestructure (phyllosilicates), which adsorb water on their surfaces. It is these clay minerals thatwe are concerned about when determining porosity and water saturation.Porosity:There are many definitions of effective porosity in the industry, for example there are six inWikipedia. An appreciation of these different definitions is fundamental to petrophysicsbecause volumetric results might be generated using one definition while the end-user ofthose results, maybe a Reservoir Engineer, might assume it was something else. Obviously,this can lead to considerable confusion and significant uncertainty in the STOIIP. It would bereasonable to expect consistent definitions of total and effective porosity across allpetrophysical workflows, for example. in both deterministic and non-deterministicworkflows. However, this is often not the case, for several reasons:1. deterministic methods often use Vshale while non-deterministic methods normallyuse a mineral model and so use Vclay2. the user may not be clear which definition were used in their interpretations3. some software products use different definitions between methodologies.One methodology is detailed that is volumetrically consistent regarding total and effectiveporosity, and that can be implemented in terms of Vclay or Vshale. This methodology is notnew or novel, it has been in use within the industry in one shape or another for severaldecades, but it is often misunderstood as it solves effective porosity before total porosity.

Page 1
SPWLA France Maison de la Géologie - 77 rue Claude Bernard - 75005 Paris https://spwla-france.frAssociation régie par la loi du 1er Juillet 1901P a g e 1 | 6SPWLA France ChapterSection française de la SPWLA “Society of Petrophysicists and Well Log Analysts”TECHNICAL SESSION:Petrophysical Interpretation Software SolutionsLogiciels d’interprétation pétrophysiqueTuesday, October 8th 2019, 13:30-17:50Salle Van Straelen, SGF, 77 Rue Claude Bernard, 75005 ParisProgram: page 1 / Abstracts: p 2 & 3 / About speakers: p 4 & 513:30 - 13:45 Welcome, Safety and preliminary remarksE. CAROLI, PresidentModelling, machine learning and clustering13:45 - 14:15 Machine Learning for Better WellsDaria LAZAREVA, CGGGeoSoftware14:15 - 14:45Solving with DTA not Guessing: A unique, Non-Statistical, Machine Learning method for CurvePredictionRavi ARKALGUD (Helio-Flare Ltd / Lloyd’s Register)Presented by RossBRACKENRIDGE (LR)Stochastic methods and uncertainty propagation14:45 - 15:15Handling Uncertainty in Petrophysical Analysiswith GeologNicolas POETE,EmersonGeneral presentation of software solutions (order defined by inverse alphabetic order)15:15 - 15:25 VoxilonVanessa HEBERT, Voxaya15:25 - 15:35 TechlogMounir BELOUAHCHIA,Schlumberger15:35 - 15:45 PowerlogDaria LAZAREVA, CGGGeoSoftware15:45 - 15:55 Interactive Petrophysics (IP)Ross BRACKENRIDGE,Lloyd’s Register15:55 - 16:05 GeologNicolas POETE, EmersonPetrophysical interpretation16:45 - 17:15Challenging Laboratory Measurements –Contribution of Numerical PetrophysicsVanessa HEBERT, Voxaya17:15 - 17:45Volumetric Inversion Methods with Integration ofAdvanced Log Measurements (NMR, Dielectric,Spectroscopy)Mounir BELOUAHCHIA,Techlog Schlumberger17:45 - 17:50 Clôture de la session / Session closureE. CAROLI, President16:05 - 16:45 Pause / Break
Page 2
SPWLA France Maison de la Géologie - 77 rue Claude Bernard - 75005 Paris https://spwla-france.frAssociation régie par la loi du 1er Juillet 1901P a g e 2 | 6SPWLA France Technical SessionPetrophysical Interpretation Software SolutionsLogiciels d’interprétation pétrophysiqueTuesday, October 8th 2019, 13:30-17:50Résumé des présentations / AbstractsMachine Learning for Better Wells by Daria LAZAREVA (CGG GeoSoftware)As data becomes more and more abundant, machine learning is rapidly becoming a standard technologyin the oil and gas industry. Machine learning drives more effective methods and introduces tools andtheories for discovering, modeling and extracting patterns and relationships embedded in large datasets.Companies can determine reservoir properties more accurately and more quickly using a new generationof analytics and prediction techniques from machine learning.This presentation focuses on machine learning for petrophysical data. The potential for machine learningto improve understanding of wells, reservoir and producing fields is virtually unlimited, and to someextent, it all begins with well log data. Using key workflows for unsupervised facies classification andautomated log editing, users can gain greater insight into subsurface rock and fluid properties. For dataclustering, we are using environmentally corrected, normalized and depth-shifted data to ensure validinterpretation results. For missing logs, we show how to leverage machine learning for synthetic loggeneration.Solving with DTA not Guessing: A unique, Non-Statistical, Machine Learning method forCurve Prediction by Dr. Ravi ARKALGUD (Helio-Flare Ltd / Lloyd’s Register), Presented byRoss BRACKENRIDGE (Lloyd’s Register)In Paris, the land of love, the question still lies unanswered… “Does he/she Loves me or Loves me not”i.e “Ma Cherie Manamou…???”Throughout history many have tried to answer the unknown by way of Guessing, this has led to theflourishing growth of new careers like astrologers, tarot readers, statisticians, face readers…etc. TheGuessing has become a powerful tool to quantify the intangibles and it has led to amazing discoveriesbut sometimes disastrous consequences.To progress from Guessing we need to resolve randomness. Is it possible to resolve randomness? Yes.In this quest we have developed a method called Domain Transfer Analysis (DTA). We can say DTAcan resolve randomness closely and now we are able to get a solution rather than pure mythical guess.It is evident that DTA has innumerable applications in many domains and the Petrophysics domain isno exception. In this presentation we will demonstrate how it has been applied to a variety ofPetrophysical applications and discuss how well the results compare to more traditional methods.File : LR_DTA_Domain_Transfer_Analysis_SPWLA_France_8oct19.pdf
Page 3
SPWLA France Maison de la Géologie - 77 rue Claude Bernard - 75005 Paris https://spwla-france.frAssociation régie par la loi du 1er Juillet 1901P a g e 3 | 6Handling Uncertainty in Petrophysical Analysis with Geolog by Nicolas POETE (Emerson)Oil Field reserves are of strategic importance for oil and gas companies. Reserves are estimated fromthe reservoirs’ geometry and their petrophysical properties (porosity, saturations, net to gross) and arecommonly reported using a 3P (Proven, Probable, Possible) convention therefore providing reservesuncertainty figures. The evaluation of reserves made from the results of software platforms using fieldmeasurements and interpretation models should therefore provide mechanisms for uncertaintyassessment. This presentation will showcase the Emerson E&P software platform for formationevaluation -Geolog-, and more specifically how its multimineral modeling tool (Multimin) can provideboth petrophysical results and their associated uncertainties.Challenging Laboratory Measurements – Contribution of Numerical Petrophysics by VanessaHEBERT (Voxaya)Presentation of recent advances in digital rock physics and their application to reservoir characterization:From core to cutting scale, 3D core images contain a considerable amount of intrinsic informationcomplementary to laboratory analyses. This presentation aims at conveying the promise and potentialof digital rock physics in reservoir characterization to petroleum research, using different tools toillustrate how a smart image-based rock physics database at industrial scale can swiftly give access tounmeasured rock properties.File : Voxilon_Challenging_use_cases_SPWLA_France_08Oct19.pdfVolumetric Inversion Methods with Integration of Advanced Log Measurements (NMR,Dielectric, Spectroscopy) by Mounir BELOUAHCHIA (Techlog Schlumberger)The calculation of fluid volumes in a reservoir has for a long time relied on Archie-derived saturationequations. These equations are overall empirical and require some parameters that are linked amongothers to the fluid properties and the texture of the reservoir, some of these are not easy to assess.New techniques have emerged to evaluate the volume of water directly, such as the dielectric and NMR.The present case study, in a shallow sand reservoir (Alberta, Canada), describes a reservoir whereconventional interpretation techniques fail to provide a correct interpretation, especially for fluidmeasurements. The multi-frequency dielectric measurements, combined with NMR, provide a directevaluation of the fluid volumes, while the spectroscopy characterizes the matrix. All measurements(triple-combo, NMR, spectroscopy, dielectric) are combined into a single volumetric inversion model,that yields a more accurate reservoir evaluation, with a reduced uncertainty.
Page 4
SPWLA France Maison de la Géologie - 77 rue Claude Bernard - 75005 Paris https://spwla-france.frAssociation régie par la loi du 1er Juillet 1901P a g e 4 | 6SPWLA France Technical SessionPetrophysical Interpretation Software SolutionsLogiciels d’interprétation pétrophysiqueTuesday, October 8th 2019, 13:30-17:50Biographie des présentateurs / About the SpeakersMachine Learning for Better Wells and Powerlog presentation by Daria LAZAREVA (CGGGeoSoftware)Daria Lazareva is Technical Advisor - Petrophysicist at CGG GeoSoftware. She has been with CGGsince 2013 and brings more than eight years of experience in core data analysis, well log interpretationand rock physics modelling. In her current role as Technical Advisor - Petrophysicist, Daria is based inthe United Kingdom and is responsible for technical support and training for users of petrophysics androck physics applications in Europe, Africa and Middle East.She has extensive experience in reservoir characterization projects for oil and gas production fieldsincluding clastic and complex carbonates. Before joining CGG, Daria worked for the Russian OilResearch Institute where she gained firsthand experience in petrophysical projects conducting well logdata QC, core data analysis, well log interpretation, analysis and elastic properties modelling. Shecontinued her career as a Project Petrophysicist at CGG GeoConsulting division, later joining theGeoSoftware team in Europe. Daria holds a Master’s Degree in Petrophysics and Rock Physics fromGubkin Russian State University of Oil and Gas.Solving with DTA not Guessing: A unique, Non-Statistical, Machine Learning method forCurve Prediction by Dr. Ravi ARKALGUD (Helio-Flare Ltd / Lloyd’s Register)Dr. Ravi Arkalgud being the CEO of Helio Flare Ltd. is involved in research along with the mandatorycompany management duties. He is actively involved in R&D for Engineering, finance, oil & gas sectorand physical sciences modelling including complete software development.He has developed novel global software products based on innovative research and novel mathematicalmethods. Ravi has expertise in interdisciplinary research, fringe areas and Computational FluidDynamics (CFD). He has over 25+ years of experience in research and industry as a mathematician,software designer and architect.Ravi was awarded Marie Curie Fellowship (in exceptional category) leading the European Commissionprojects. He is a gold medallist in engineering and mathematics. He has won ORS awards along withvarious other national and international scholarships. Ravi has also published several researchpublications and has supervised various research projects over the years.File : LR_DTA_Domain_Transfer_Analysis_SPWLA_France_8oct19.pdf
Page 5
SPWLA France Maison de la Géologie - 77 rue Claude Bernard - 75005 Paris https://spwla-france.frAssociation régie par la loi du 1er Juillet 1901P a g e 5 | 6Handling Uncertainty in Petrophysical Analysis with Geolog and Geolog presentation byNicolas POETE (Emerson)Nicolas Poete is Product Manager for the Geolog product suite of the Emerson E&P software division.He has worked for the past 22 years as a Geolog product champion, starting at CGG software divisionin 1997, then Paradigm and Emerson. During this time he has been assigned to different roles (hotlinesupport, presales consultant, Tier 2 expert then Product Manager) focused on the Geolog product supportand promotion for clients all around the world. Nicolas holds a Master degree in Geology fromUniversity of Franche-Comte and an engineering degree in Exploration Geology from the IFP-School.He is member of EAGE, SPE and SPWLA.Interactive Petrophysics (IP) presentation by Ross BRACKENRIDGE (Lloyds Register)Ross Brackenridge has over 20 years experience in the Oil & Gas Industry. Currently holds the positionof Technical Manager for all Lloyd Registers Subsurface Digital Products. Ross has a background inPetrophysical interpretation where he specialised in Well Integrity and Production Logging analysis.File : LR_IP_Demo_Slides_SPWLA_France_8oct19.pdfChallenging Laboratory Measurements – Contribution of Numerical Petrophysics andVoxilon presentation by Vanessa HEBERT (Voxaya)Hiking made Vanessa Hebert want to become a geologist. She holds a degree in Geosciences from theUniversity of Bordeaux. She then obtained a PhD in Geology from the University of Montpellier.During her doctorate in Geology, she discovered the 3D X-ray tomography as a new way of visualizingand analyzing the carbonated rocks heterogeneous at multiple scales. It was (and still is) a real pleasureto travel through these datasets of rocks imaged in 3D. Her issue was to process large amounts of 3Dimages facing the timeline of her thesis. The solution appeared when she met her future associates, amathematician and a physicist… With them, she decided to create Voxaya in order to valorize theunexpected information of the 3D images, make simple their analyses. Now, she develops Voxilon anefficient software dedicated to Digital Material Physics bringing her knowledge in geosciences andsynthetic material engineering. As General Manager of Voxaya, she is in charge of product developmentand marketing account management for Voxaya.File : Voxilon_Challenging_use_cases_SPWLA_France_08Oct19.pdfFile : Voxilon _Software_Presentation_SPWLA _France_08oct19.pdfVolumetric Inversion Methods with Integration of Advanced Log Measurements (NMR,Dielectric, Spectroscopy) and Techlog presentation by Mounir BELOUAHCHIA (TechlogSchlumberger)Mounir Belouahchia graduated from Toulouse (France) University after completing his Master Degreein Geology of Natural resources. He started in Schlumberger in 2011 as Petrophysicist supportEngineer. Currently, he is combining the role of consulting Petrophysicist and business development ofpetrophysics software and integrated workflow solutions.
Page 6
SPWLA France Maison de la Géologie - 77 rue Claude Bernard - 75005 Paris https://spwla-france.frAssociation régie par la loi du 1er Juillet 1901P a g e 6 | 6Programme / Programpage 1Résumé des présentations / Abstractspages 2-3Biographie des présentateurs / Speakers biopages 4-5Pour participer à une session technique de SPWLA France :Vous pouvez soit être présent, soit suivre les présentations par Skype Web link.Aucune participation financière n’est requise. Pour cela, vous devez, au préalable, si vous n’êtespas membre de la SPWLA en 2019, simplement vous inscrire sur le site de la SPWLAhttps://www.spwla.org/ : cliquez sur “Membership” et sélectionnez: « Become a Chapteraffiliate », entrez vos coordonnées et sélectionnez le chapitre « SAID (France) ». Vous devenezalors gratuitement membre affilié à SPWLA France.Ensuite, pour vous inscrire à une session technique, envoyez un email à vice-president@spwla-france.fr avec nom, prénom, compagnie, poste en spécifiant soit votre présence, soit votresouhait de suivre les présentations par Skype Weblink. Dans le 2ème cas, une invitation voussera envoyée 2 ou 3 jours avant la session.To attend a technical session of SPWLA France :You can either be present at the location of the meeting or follow the lectures via a Skype Weblink.The session is free. If you are not member of SPWLA in 2019, you have to register first on theSPWLA web site https://www.spwla.org/, click on “Membership” and select « Become aChapter affiliate »; Complete the information requested and select the chapter “SAID(France)”. You become affiliate member of SPWLA France for free.Then, to register to a technical session, just send an email at vice-president@spwla-france.frwith name, company, position. Mention if you will be present or will follow the lectures viaSkype Web link. In the second case, an invitation will be sent 2 or 3 days before the sessionstarts .Information sur / Information on: https://spwla-france.fr or https://la-said.org

Page 1
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 1 | 11SPWLA France ChapterSection française de la SPWLA “Society of Petrophysicists and Well Log Analysts”TECHNICAL SESSION:GEOTHERMICS / GEOTHERMIETuesday, November 27th 2018, 14:00-17:45Salle Van Straelen, SGF77, rue Claude Bernard – 75005 ParisPréambule / ForewordsSuite à la signature de la charte SPWLA, la S.A.I.D., Société pour l’Avancement de l’Interprétation desDiagraphies, se dénomme désormais « SPWLA France Chapter ».Cette session technique s’est déroulée en lien avec le workshop conjoint EAGE/IGA/DGMK sur lagéothermie profonde tenue les 8 et 9 novembre 2018 à Strasbourg. Notre session a repris certains despapiers EAGE et proposé un éclairage de la technique géothermique sous l’angle du forage, desdiagraphies et de l’évaluation de formation.After having signed the SPWLA charter, S.A.I.D. Société pour l’Avancement de l’Interprétation desDiagraphies, is now called “SPWLA France Chapter”.This technical session took place in close link with the joint EAGE/IGA/DGMK workshop on deepgeothermal energy held in Strasbourg on November 8th-9th. Our session re-used some of the EAGEpapers and proposed a different view focused on the drilling, logging and formation evaluation aspects.Programme / Programpage 2Résumé des présentations / Abstractspages 3-9Biographie des présentateurs / Speakers biopages 10-11Information sur / more information on: https://la-said.org
Page 2
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 2 | 11TECHNICAL SESSION:GEOTHERMICS / GEOTHERMIESGF, Maison de la Géologie – 77, rue Cl. Bernard 75005 PARISTuesday, November 27th 2018Programme / Program14:00 - 14:05 Welcome, Safety and preliminary remarksE. CaroliIntroduction14:05 - 14:25Que savons-nous sur le régime thermique desbassins sédimentaires ?Jean-Luc RudkiewiczIFP-ENWhat do we know about the thermal regimeof sedimentary basins?Study case #1: Bassin parisien / Paris basinTowards a new standard in well architectureand wireline logging in the Paris basin: theCachan pilot site approach14:25 - 14:45∎ Well architecture, drilling/geosteering Mélanie Davaux GPC-IP,Pierre Ungemach, Geofluid14:45 - 15:10∎ Logging and formation evaluationChiara Cavalleri,Erik Wielemaker, SLBStudy cases #2: Fossé rhénan / Rhine graben15:10 - 15:40 Wellbore logs in Rittershoffen, Alsace:Acquisition, analysis and integration forfractured reservoir characterizationGiovanni Sosio, SLBRégis Hehn, ES GéothermieTechnologies / Technologies:16:10 - 16:40 DRIMP and Pseudo Impedance as a proxy ofrock propertiesAlfazazi Dourfaye,Dhaker Ezzedine,VAREL Intl16:40 - 17:10 Using the Bit to Measure How Rock Reacts toForce: An In Situ Rock MechanicalMeasurementJosh UllaFRACTURE-IDGeneralités et conclusion / Generalities and conclusion17:10 - 17:25 The Geothermal IndustryRoger Henneberger,GeothermEx-SLB17:25 - 17:40 Geothermal Well Logging and Analysis:Opportunities and Challenges17:40 - 17:45 Clôture de la session / Session closureE. Caroli15:40 - 16:10 Pause / Break
Page 3
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 3 | 11TECHNICAL SESSION:GEOTHERMICS / GEOTHERMIETuesday, November 27th 2018, 14:00-17:45Résumé des présentations / AbstractsQue savons-nous sur le régime thermique des bassins sédimentaires ? / What do we know about thethermal regime of sedimentary basins ?, Jean-Luc Rudkiewicz*, IFP-ENIFPEN has worked on the thermal regime of sedimentary basins and its modelling since it wasrecognized that temperature through geologic time impacts hydrocarbon generation.Modelling present day temperature at basin scale sometimes requests to take the geological evolutioninto account. My presentation will recall the main physical aspects of heat transfer, show how to takethose into account.The definition of the area to model, and the need for dynamic of heat transfer, as illustrated below, willalso be shown.Examples cover the Paris Basin, the Arabian-Iranian collision belt and the Gulf of Mexico.Towards a new standard in well architecture and wireline logging in the Paris basin: the Cachanpilot site approach
Page 4
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 4 | 11Well architecture , drilling/geosteering by Mélanie Davaux*, Pierre Ungemach* and Miklos Antics,GPC-IPThe subhorizontal well (SHW) concept has long been advocated as a means for reclaiming heat fromlow permeability geothermal reservoirs. It was finally validated in 2018 on a Geothermal DistrictHeating site located at Cachan, in a low to medium permeability, multi-layered reservoir. A singledoublet succeeded in replacing two existing doublets, aged 34 years, thus pioneering a world premierein geothermal well design.The well path chosen was a compromise between single horizontal and multilateral well profiles, sincethe planned SHW trajectory intersects the whole multilayered reservoir sequence, thus cumulating itsindividual layer flow contributions. Given a thin layered reservoir setting and a long-legged drain, thelatter would, in most instances, trend near horizontal and drain accordingly significantly larger flowamounts compared to a standard deviated well design.Geosteering on the first well (GCAH1) is illustrated in Figure 1. In particular, XRD/XRF geochemicalmonitoring used alkaline and mineral proxies as porosity and diagenetic markers respectively, and metaloxide marine littoral (carbonate barrier) lithofacies indicators. The data set and experience gained onwell GCAH1 were integrated into the geosteering of (injector) well GCAH2, which addressed a morecomplex reservoir and structural setting characterised by a poorly porous/pervious reservoir and fastvarying upward dipping context.The Cachan (DBH3) SHW project achieved technical and economic viability of the subhorizontal wellconcept in a multilayered reservoir sedimentology setting and densely populated urban and drillingenvironments.Wireline logging and formation evaluation by Chiara Cavalleri*, Erik Wielemaker* and GiovanniSosio, SchlumbergerFor geothermal projects to be economic requires a combination of high temperature and sufficient flowrates. Log data can help making this assement at the early stage and allow for optimal decision making.In the case of the Cachan project, a unique log combination was run to assess lateral homogeneity andflow potential in the target Oolithic limestone layers.For the first time Nuclear Magnetic Resonance and advanced dipole sonic technology are applied to thegeothermal project and in a lateral well to help define the reservoir quality and isolate layers with higherflow potential. In particular, standard NMR measurements typically applied to oil and gas industry haveproven to be fully applicable to geothermal when describing the pores system, particle size and sorting,assessing the fluid movability through the thin layers.The log results complement and integrate the porosity data derived from sonic and density logs addingimportant details. Deeper and non-standard azimuthal data of the sonic were also explored tocomplement the overall understanding of the different measurements and better define the structuralmodel.The logging tools were pushed to the desired depths using open hole tractor; thus, demonstrating thatwireline conveyed logging in high angle well is a viable and effective approach.
Page 5
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 5 | 11Figure 1 Geosteering window: top, real-time parameters from mud logging (geochemical), LWD and drillingparameters; bottom left, logs from vertical offset wells; bottom right, curtain section with the planned and actualwell trajectory plotted against a layered reservoir modelFigure 2 The analysis of NMR logs together with sonic and density images allows for a quick evaluation ofreservoirs quality and rock permeability distribution to highlight intervals with higher flow rate potential.
Page 6
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 6 | 11Wellbore logs in Rittershoffen, Alsace: acquisition, analysis and integration for fracturedreservoir characterizationGiovanni Sosio*, Andreia Mandiuc and Annalisa Campana, SchlumbergerJeanne Vidal and Régis Hehn, ÉS GéothermieThe ECOGI project consists in a geothermal doublet in Rittershoffen (Alsace), producing heat for anindustrial plant. The two wells, GRT-1 and GRT-2, targeted local natural fracture zones in the vicinityof a large normal fault across the Buntsandstein sediments and the granitic basement at a depth below2000 m below surface.An extensive measurement campaign was carried out in both wells by means of wireline logging.Pressure and temperature logs, nuclear logs (density and porosity), resistivity logs, dipole sonic logs,and wellbore image logs were acquired in the open hole over the target fractured aquifer and partiallyacross the overburden.These logs were processed and interpreted to build an integrated model of the site, describing itsgeological properties, notably the fracture network, its dynamic behaviour in terms of fluid and heatflow, and its geomechanical properties.Wellbore imaging results from acoustics imagers were interpreted to understand the geometry of thenatural fracture network, which acts as the main fluid pathway in the Rittershoffen geothermal system.The results were integrated with temperature logging to understand which fractures were open andtherefore cooling down when invaded by the drilling mud.Density and sonic logs were used to derive the mechanical properties of the near-wellbore rock and thestress magnitudes; the interpretation of drilling-induced features in the wellbore images alloweddetermining the orientation of the local stress acting on the wellbore. The geomechanical model obtainedwas used to predict the occurrence of mechanical or hydraulic instability along the well and comparethe prediction with the events actually observed in the well, providing a validation of the geomechanicalmodel.The results of well-centric fracture and geomechanical analysis were integrated in a 3D reservoir modeland used to understand the performance and the risks associated with geothermal operations at the site.Left: rose diagrams representing natural fracture strikes along the GRT-1 and GRT-2 trajectories andreconstructed natural fracture network model.Right: wellbore stability analysis of well GRT-1 (left to right: mechanical property profiles fromwellbore logs; critical mud weights; predicted breakout image; formation markers; observed breakouts;observed borehole shape.
Page 7
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 7 | 11DRIMP and Pseudo Impedance as a proxy of rock properties, Alfazazi Dourfaye* and DhakerEzzedine, VAREL IntlDetermining rock properties with a higher resolution is key to the optimization of the recovery of mineraland geothermal resources. Conventional logging tools such as sonic and resistivity tools have a verticalresolution of 2 feet and depths of investigation of 12 in. Drill bits have depth of cut varying between 0.1mm to few millimetres and rock properties changes are immediately reflected by the rate of penetrationchanges. Thus, the drill bit can be an excellent logging tool when drilling performance changes arecarefully monitored and translated into rock properties variations versus drilling depth.For that purpose, a downhole data recorder was developed by Varel to record bit dynamics and applieddrilling parameters as close as possible to rock and the cutting elements. The latest memory recordertool named DataTrack* developed by VAREL can handle temperature up to 165°c and is capable torecord tri-axial bit accelerations, downhole bit rotation speed D-RPM, weight on the bit D-WOB, torqueat the bit DTOB, temperature, and several other parameters. The sample frequency is adjustable betweenfew hertz to 250 Hz.Data collected while drilling are processing to generate two new logs named: Drilling Impedance(DRIMP) and Pseudo Impedance (PI) in reference to the compensated SNAPLOG introduced by IFPENin 2000DRIMP = WOB^a / DOC^bWhere a and b are drill bit dependent,DOC is the depth of cut expressed in mm/rev. DOC= ROP/RPMPI = A / (RPMROP)Where A is the root mean square axial (Z) acceleration over a short constant time intervalBoth logs are compared to each other, to sonic log, to UCS, to Young Modulus and to Poisson ratioprocessed from conventional wireline logs (UCS = unconfined compressive strength, or uniaxialcompressive strength, in the well axis).First there is a good match between DRIMP and PI in the case study and more cases will be needed toconfirm the trend. On another hand the comparison of the new logs (DRIMP and PI) with raw data suchas sonic log and rock mechanical properties revealed a good match as shown on the graphs below,locally at depth 2375 unit?, but not everywhere. Therefore, if the trend is confirmed with more cases,expensive wireline logs can be complemented by a low-cost solution using DRIMP and PI as a proxyof rock mechanical properties, including for fractured zone detection.VAREL Trademark
Page 8
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 8 | 11
Page 9
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 9 | 11Using the Bit to measure How Rock Reacts to Force: An In Situ Rock Mechanical Measurement,by Josh ULLA
, FRACTURE-IDPDC bits crush the rock as they drill, going through elastic, plastic then full failure of the geology at thecutter interface. Fracture ID can measure how the bit moves during the crushing mechanism todetermine mechanical characteristics of the rock such as Young’s modulus and Poisson’s ratio. Thesemeasurements prove to be quite useful in determining formation quality and depletion. This talk willwalk through the technology applied and a few key examples. More information can be found atwww.fractureid.com.The Geothermal Industry, Roger Henneberger
, GeothermEx (a Schlumberger company)An overview of geothermal systems and their exploitation: where they are found, which countries havesignificant developments, how large a resource base is available, how the industry has grown, who thedevelopers/operators are, typical exploitation schemes, pros and cons, and the outlook for the future.Geothermal Well Logging and Analysis: Opportunities and Challenges, Roger Henneberger*,GeothermEx (a Schlumberger company)A review of the geothermal environment and how it affects and responds to logs that are used routinelyin the oil & gas industry. The focus will be on the volcanic environments that commonly host high-temperature geothermal systems, and the constraints on logging and challenges to interpretation thatthey present.
Page 10
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 10 | 11TECHNICAL SESSION:GEOTHERMICS / GEOTHERMIEBiographie des présentateurs / About the SpeakersQue savons-nous sur le régime thermique des bassins sédimentaires ? /What do we know about the thermal regime of sedimentary basins ?Jean-Luc Rudkiewicz* is in IFPEN’s Geosciences R&D Direction. He has a long experience in petroleum systemmodeling software development and use in real cases. Cases are located both in extensional and compressionalcomplex structural settings. His current field of interest is 3D structural kinematic modeling, its links to paleofracturation through strain and stress reconstruction. Jean-Luc studied at Ecole des Mines and holds a PhD on thestructural and thermal evolution of the Tethyan margin in the French Alps.Towards a new standard in well architecture and wireline logging in the Paris basin: the Cachanpilot site approachMelanie Davaux* is a geologist with structural analysis background and seismic interpretation work experience.Her task focuses on geological analysis, geothermal reservoir simulation (simultaneous heat, mass and solutetransport) and well tests analysis. She is involved in feasibility studies addressing the review of well design andexploration/production permitting documents in the deep sedimentary geothermal aquifers in the Paris Basin.She holds two master’s degrees in petroleum geology from IFP School and University Paris VI.Miklos Antics, presently Managing Director of GPC IP and GEOFLUID France, is a graduate and post graduatereservoir engineer of the Ploiesti (Romania) School of Petrol. Holds a PhD in well testing, multiphase flow andreservoir simulation. Miklos Antics has gained a wide experience in resevoir engineering, simulation, welltesting/logging and drilling/production in teaching, field practice and operation management areas. He is currentlyPresident of EGEC (European Geothermal Energy Council). Former member of the IGA BoD and past Chairmanof the IGA European Branch. He authored/co-authored over 50 technical papers and four textbooks.Pierre Ungemach* is the Chairman of Geofluid. He has a geophysical engineering degree (IPGP, Strasbourg) andMSc in applied mathematical and physical science degrees. He has 40 years of experience in geophysics,hydrogeology, engineering, reservoir simulation, log analysis, geothermal production and maintenance,thermochemical scaling and corrosion processes, geothermal project feasibility, project management and R&Dprograms. He has been for groundwater, hydrocarbons and geothermal resources. He has been vice-president ofEGEC and he has authored more than 50 scientific and technical publications.Chiara Cavalleri* is a Principal Petrophysics Domain Champion with Schlumberger, based in Aberdeen, UK.She provide technical support to logging activities and technology application for formation evaluation acrossEurope, working primarily in the field of wireline logging and related data services, from planning of the evaluationprogram to data interpretation. She joined Schlumberger in 2005 as a Wireline field engineer in Congo, thenworked as petrophysicist and Wireline petrophysics Domain in different locations in West Africa, before movingto UK. She received a B.S. in engineering from the Technical University of Pavia, Italy.Erik Wielemaker* is a Principal Acoustic Domain Champion for the Eastern Hemisphere with WirelineSchlumberger. Based in The Hague, his role is to support the logging, processing and interpretation ofSchlumbergeracoustictools,includingforgeomechanicsandrockphysics.After a MSc in Geophysics from the university of Utrecht, he started his career in seismic processing and joinedGeco-Prakla in 1997, where he led operations in 4 continents. He moved to Schlumberger Wireline in 2001, firstto evaluate sonic tools in the SKK technology center in Japan, then as a petrophysicist in Mexico and finally in theNetherlands since 2005.Wellbore logs in Rittershoffen, Alsace: acquisition, analysis and integration for fracturedreservoir characterizationGiovanni Sosio* is a technical team leader with Schlumberger in Paris. After graduating in Environmentalengineering and Applied geophysics in Milan, he joined Schlumberger as a wireline field engineer in the NorthSea in 2005. He has held a variety of positions since then: providing software support in Italy, managing a CO2storage site modeling project in Spain, developing the geomechanical software business in Europe, coordinatingconsulting projects in France where he is based since 2009.Andreia Mandiuc is a senior geoscientist working for Schlumberger in Paris. Her domain of expertise spansstructural and reservoir geology, geomodelling and geomechanics. She has joined Schlumberger in 2007 andworked on support, training and consulting in the geoscience domain; more recently she is in charge of
Page 11
SPWLA FranceMaison de la Géologie - 77 rue Claude Bernard - 75005 Parishttps://la-said.orgAssociation régie par la loi du 1er Juillet 1901P a g e 11 | 11geomechanical consulting for customers across Europe. She graduated in Geological engineering from theuniversity of Bucharest.Annalisa Campana is a senior geologist in the business development team for Europe in Schlumberger. She holdsa master’s degree in Geology from the Sapienza university in Rome. With a strong expertise in all thegeoscientifical domains, she has held positions as reservoir engineer and geologist in three countries since joiningSchlumberger in 2009.Jeanne Vidal is a geologist and earned a PhD in Geology at the University of Strasbourg in 2017. Her researchfocuses on natural fracture systems and she has notably applied it extensively to geothermal contexts. She iscurrently working as a geologist for ES Géothermie.Régis Hehn is a reservoir engineer at ES Géothermie, based in Strasbourg. He holds an engineering diploma fromthe École des Mines de Nancy and a MSc in hydrogeology and geothermal energy from the University ofNeuchâtel. He has worked on stress and flow characterization from wellbore logs in geothermal wells and is incharge of thermo-hydro-mechanical modeling and simulation and testing operations for the geothermal projects atES Géothermie.DRIMP and Pseudo Impedance as a proxy of rock propertiesAlfazazi Dourfaye* is Director of optimization services at Varel International. He holds an engineering diplomafrom École des Mines d’Alès and earned a PhD in Techniques et Economie de l’Exploitation du Sous-sol at Écoledes Mines de Paris. He has 23 years experience in drill bit industry focused primarily on PDC bit designmethodology, product management, software development and business development.Dhaker Ezzeddine is engineer at Varel International. He holds an engineering diploma from Tunisia PolytechnicSchool and earned a PhD in Techniques et Economie de l’Exploitation du Sous-sol at École des Mines de Paris.He has 6 years’ experience in drill bit industry focused primarily on drilling data mining and analysis, drilling dataacquisition, and new product and software development.Using the Bit to measure How Rock Reacts to Force: An In Situ Rock Mechanical MeasurementJosh Ulla* has a proven track record of applying innovative and outside-the-box solutions to geoscience problems.Originally from Canada, Josh spent his last 6 years before joining Fracture ID working with ExxonMobil inHouston, Texas in the Geophysical Operations and Formation Evaluations Groups. At ExxonMobil, Josh servedas the Global Borehole Seismic Expert, and was relied upon to model, design, acquire, process, and interpretseismic and petrophysical data. Prior to this, he completed his masters in potential field magnetic interpretation,bridging his Mathematics degree nicely into geophysical data analytics. Josh has both research & development, aswell as hands on field experience.The Geothermal Industry and Geothermal Well Logging and Analysis: Opportunities andChallengesRoger Henneberger* has 35 years of experience in the investigation and development of geothermal resources.Since 1984 he has been an employee of GeothermEx (now a Schlumberger Company), where he is the EarthScience Manager. His work has included exploration of new fields, participation in the drilling, logging, testingand sampling of deep geothermal wells, conceptual modeling and resource assessment, management of nationaland regional studies, economic analysis, and assessment of project risks. In all, he has reviewed or assessed morethan 100 geothermal resources and has worked in more than 20 countries. He holds degrees from StanfordUniversity in the United States and the University of Auckland in New Zealand.


Société pour l’Avancement de l’Interprétation des Diagraphies
SAID 6, rue Dombasle 75015 Paris France
Tél. (33) 01.45.33.50.00 - Fax (33) 01.45.33.50.94 - E-mail said@la-said.org